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Long waves induced by short-wave groups over 
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Unidirectional and periodically modulated short waves on a horizontal or very nearly 
horizontal bottom are known to be accompanied by long waves which propagate 
together with the envelope of the short waves a t  their group velocity. However, for 
variable depth with a horizontal lengthscale which is not too great compared with 
the group length, long waves of another kind are further induced. If the variation 
of depth is only one-dimensional and localized in a finite region, then the additional 
long waves can radiate away from this region, in directions which differ from those 
of the short waves and their envelopes. There are also critical depths which define 
caustics for these new long waves but not for the short waves. Thus, while obliquely 
incident short waves can pass over a topography, these second-order long waves may 
be trapped on a ridge or away from a canyon. 

1. Introduction 
Moored vessels, tension-leg platforms and some small harbours have natural 

periods on the order of a few minutes; therefore they are not resonated directly by 
wind waves whose typical periods are around 10 s. However, the incident sea is seldom 
uniform, and the modulational periods of short waves can be in the range of a few 
minutes. It is known from the theory of radiation stresses (Longuet-Higgins & 
Stewart 1960, 1961, 1962) that long waves collinear with respect to, and of the same 
period as, the short-wave envelope can be induced by nonlinearity and then 
propagate with the envelope, provided that the lengthscale ofdepth variation is much 
greater than the group length. It is further known for a semi-infinite tank of uniform 
cross-section that paddle-generated wave groups can radiate these two kinds of long 
waves (Hansen 1978; Sand 1981). The radiation stress theory has also been used by 
Longuet-Higgins & Stewart (1962) to infer qualitatively that waves breaking on a 
beach can induce seaward long waves which propagate at the speed (gh)t. At the other 
extreme, a steady train of obliquely incident waves breaking on a beach can induce 
steady longshore currents (Bowen 1969 ; Thornton 1970 ; Longuet-Higgins 1970a, b ) .  
Here the group length is infinite compared with the topographical lengthscale, so that 
the long waves become the current in the limit. Recent interest has been on the third 
case where the two lengthscales are comparable. For example, Bowers (1977) studied 
a one-dimensional channel of constant depth but discontinuous width, the length of 
one width being finite and the other infinite. Modulated wave groups incident from 
infinity are found to induce long waves propagating a t  the speed (gh)a and excite 
resonance in the section of finite length. More recently, Molin (1982) has considered 
short-wave groups in fairly deep water (kh 1) normally incident on a one-dimensional 
topography, while the group length is nevertheless much greater than the water 
depth. Long waves of speed (gh)? are found to radiate away in both directions from 
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the zone of variable depth. Because of the large-kh assumption the amplitude of the 
radiated long waves is much weaker than A2k, where A is the typical amplitude of 
the short waves. Although some numerical results have also been presented by Molin 
for kh = 0(1), they appear to have been based on an incomplete theory. 

In  this paper, we extend Molin (1982) and study long waves caused by short-wave 
groups over slowing varying depth. We assume that the lengthscales of wave 
modulation and of depth change are comparable. The depth is intermediate relative 
to the short wavelength, kh = 0(1), and varies so slowly that reflection of short waves 
is unimportant yet not so slowly that the forced long waves are no less than O(kA2).t 
In  $ 2 the governing equations based on geometric-optics approximation for waves 
over two-dimensional topography h = h(x, y) are given. The remaining parts of the 
paper are limited to one-dimensional topography h = h(z), with emphasis on oblique 
incidence. I n  $ 3  the variation of the short wave and the steady set-down are 
examined. I n  $4 we discuss the long wave locked to the short-wave envelope and the 
free long wave radiated away from the zone of variable depth. The amplitudes of these 
radiated waves are found in $ 5  by looking into the zone of variable depth. The 
influence of the short-wave incidence angle is discussed for shelves, ridges and 
canyons of different width. Waveguide effects are pointed out. 

2. General governing equations 
Consider a train of slowly modulated sinusoidal waves over a slowly varying 

two-dimensional topography. We assume that the length- and timescales of the 
groups are O(e-l) times those of the incident short waves, where e + 1 .  Specifically 
the wavenumber and frequency of the envelope are ek, and ewCg,/CO respectively, 
where k, and w are the wavenumber and frequency, and C,, and C, the group and 
phase velocities of the short waves over the constant reference depth h,. We further 
assume that the slopes of both the short waves and the depth h are O(e). Introducing 

- (2.1) 

the slow variables x = EX, with x = (x,y), 

t = et, I 
we have the first-order velocity potential and free-surface displacement 

$=--  igA ch k(z+ h) exp i ( {k(x) * dx - w f )  + *, 
2w chkh 

5 = $A exp i ( Jk(X).dx - wt)  + *. (2.3) 

Here * denotes the complex conjugate of the preceding term, A(x, f) is the amplitude, 
h,(x) the still-water depth and k(x) the local wavenumber governed by the dispersion 
relat'ion 

w2 = gk th  kh with k = Ikl. 

The frequency w of the short wave is taken to  be constant; slow variations in time 
are contained in the amplitude A(z, i). It is well known that 

t Typical numerical values are as follows: short-wave period = O(10 s ) ,  depth O(20 m), group 
and long-wave period O(100 s ) ,  group and topography length O(100 m), short-wave amplitude 
O(3  m) and long-wave amplitude O(0.3 m). 
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and 

Note that on constant depth A must be a function of k*js/k - C, t. At the second order 
the mean sea level ((js,f) and the induced long-wave velocity U(js,i) satisfy the 
equations 

-+V-  hU+--) k 91AI2 = 0, 
at - (  w 2 

-+gvg+-v(-) aU - w 2 -  g1AI2 = 0, 
af  29 2sh2kh 

which were deduced in this form by a WKB procedure under the present assumptions 
of scales (Chu & Mei 1970). We stress that these equations hold only in the range 
x,t= O(1); for larger spatial and time domains wave instability is important and 
higher-order effects must be considered. Also, since E does not appear explicitly, our 
results are independent of E as long as it is sufficiently small. If U is eliminated by 
cross-differentiation, then 

Since the radiation stress tensor for the progressive wave (2.2) is 

S = p$[(g-i)/+!$kk][l+O(~2)], 

we may re-express, after some algebra, (2.9) as 

a26 1 - - 

at P 
V.ghVg--, = - V * ( V * S ) + O ( s 5 ) .  

(2.10) 

(2.1 1) 

I n  the limit of constant depth, (2.11) was derived and used for calculating the set-down 
and set-up of unidirectional wave groups by Longuet-Higgins & Stewart (1960, 1961, 
1962). A similar equation with constant h also governs the sound wave generated by 
turbulence (see Lighthill 1952), in which case [ corresponds to sound pressure and 
S the momentum flux tensor due to random fluctuations. 

Our goal here is to study the long wave generated by variations in the radiation 
stress in an inhomogeneous medium. 

The following normalization will be employed : 

where the subscript zero refers to the constant depth h, and k, = w 2 / g .  In  terms of 
these normalized variables, the new forms of (2.5)-(2.11) are obtained simply by 
letting w and g be unity, and will be omitted. 

3. Short waves and steady set-down on the one-dimensional topography 
For a general two-dimensional topography, the wave-action equation (2.6) must 

be solved numerically. Here we only focus our attention to  the simpler case of straight 
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and parallel contours h = h(X). In this case 
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k = k(X), k, = k,(X), k, = constant. (3.1) 

(3.2) 

The local angle of incidence a(X) is defined by 

k, = k cos a, k, = k sin a = k,  sin a,. 

Over constant depth, the simplest model for a slowly modulated wavetrain is the 
superposition of two colinear sinusoidal wavetrains of slightly different wavenumbers 
k,+ck, and k,-ck,, with normalized amplitudes 1 and b ,  respectively, b being 
positive and real. The corresponding wave envelope is given by 

A(X, Y , T )  = $exp[i(k,,X+k,, Y - O , T ) ] + @ e x p [ - i ( k , , X + k y O  Y - 0 ,  T ) ] ,  (3.3) 

where 0 = Cgok, .  (3.4) 

We shall assume that the incident wave from the region X < X, where h = h, has 
this envelope. In the region of variable h the envelope is expected to be of the following 
form : 

X 
A ( z , y , T )  = @(X)exp[i( 1 K,dX+k, 

XO 

+$bA(X)exp[i( l IoK,dK+k,  Y-QT)] ,  (3.5) 

where A(X) and K,(X) are real functions of X and k, = kyO = constant. Substituting 
this into the dimensionless form of (2.6), we get from the real and imaginary parts 
respectively 

A@) = [@I:; (3.6) 
c,x 

and 0 = K, C,, + k ,  C,,. (3.7) 

Dividing (3.7) by 0 = Cgo k, we get 

hence the x-component of the envelope wavenumber vector can be written as 

which reduces to k,, when h = h,. For a fixed w and increasing h, the ratio 

(3.10) 

increases monotonically, hence K, becomes increasingly greater than k,. Now let h 
increase with X. For sufficiently large angle of incidence a caustic may exist such that 
k,$O; then K,fco. There the short-wave crests are perpendicular to the caustic 
contour while the envelope crests are normal to it. On the other hand if h decreases 
with X from X,, K, falls below k,, but the difference diminishes as hJO. Sample 
numerical results are shown in figure 1 for the case where the dimensionless h, = 0.5. 
For a greater h,, the ratio (3.9) and K,-k, are smaller; the qualitative features 
of K, and k, versus h are the same as in figure 1. The behaviour of the envelope near 
a caustic requires a different approximation which should account for reflection ; we 
shall postpone cases involving these caustics for future study. 
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FIGURE 1. Dimensionless wavenumber components in the 2-direction as functions of incidence angle 
a, and dimensionless local depth: -, k, for the short waves; ---, K ,  for the envelope. 

The wave envelope propagates in the direction p with respect to  the X-axis where 

t a n p  = k,/K,, (3.1 1)  

while the dimensionless propagation speed of the envelope is 

C ,  = l2(Px+ki)-4. (3.12) 

If the depth changes from h, for X < X, to h, 2 h, for X > X, > X, then on the 
transmission side 

K,. 2 K,, = k,, so that tanp, 5 t ana .  

I n  view of (2.9), we express the second-order mean sea level as 

6 = (,(X)+~[&X)exp2i(k, Y - Q T ) + * ] .  (3.13) 

The steady-state part corresponding to the zeroth harmonic of IAI2 is 

(3.14) 

which is the ordinary set-down of waves unmodulated in time. The amplitude [(X) 
is governed by the ordinary differential equation : 

where use has been made of (3.6). 
We plot the steady set-down to(X) in figure 2 for 6 = 1, a, = 0, in, in, and h, = 0.5. 
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FIGURE 2. Steady-state set-down f o  as a function of angle of incidence and 
local depth. Depth on incidence side h, = 0.5. 

h 

As h i O ,  to$ - 00 ; the weakly nonlinear theory is invalid here. For sufficiently large 
a,, 6, also becomes unacceptably large a t  the caustic; this can in principle be remedied 
by a locally refined theory. 

4. Locked and free long waves on regions of constant depth 
We now separate the amplitude [ ( X )  of the time-varying component into two parts : 

the locked waves and the free waves. Here we first examine the regions of constant 
depth. 

For constant depth, the first [ ] on the right of (3 .15)  is constant and the remaining 
terms vanish; the particular solution is 

with 

X 
[= ELexp(2i KxdX), 

xo 

2 k h ( P x + k ; )  2Q2k + -)/ [ (K;  + k;) h - Q2]. 
8 Cgx sh2 kh C, 

L -  

From (3 .13)  and ( 4 . 1 ) ,  tL travels in the same direction as the wave envelope (cf. ( 3 . 9 ) )  
but not in the direction of the short waves themselves. The waves described by CL 
are called the locked waves as in Molin (1982) .  For b = 1 and normal incidence 
a, = p = 0, tL reduces to the well-known result of Longuet-Higgins & Stewart (1964) : 

(4 .3 )  

We plot tL according to (4.2) in figure 3 for b = 1 and h, = 0.5; i t  qualitatively 
resembles to. The effect of angle of incidence is small. The large values near h = 0 
and near the caustic are not reliable and correspond to the failure of the present 
theory. 

From here on we assume the region of variable dept'h to be confined in X, < X < X, 
and let h = h, for X < X ,  and h = h, for X > XI. I n  the zones of constant depth the 
complete solution for [is of the form 
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FIGURE 3. Amplitude EL of locked long wave as a function of angle of 
incidence a, and local depth. 

where (cL),, , are given by (4.2). The remaining parts (cF)o, correspond to the free 
waves, which are the homogeneous solutions of (3.15) over depths h, and h,. The 
behaviour of these unforced waves ((F)O, depends crucially on the sign of 

in these two regions. If A3 > 0, (cF)j must be outgoing waves in the region h = hi 

(eFlj = Bjexp (2il~,11xl) if A; > 0, 

These free waves propagate a t  the linear long-wave speed C, = h] (or (ghj): in physical 
scale) and in the direction 0, with 

tanOj = (sgnX) ky / lA j l .  (4.7) 

If Aj” < 0, cF attenuates exponentially: 

Thus these long waves can be trapped away from the region where A3 < 0. Trapping 
of long waves is of course well known in the linearized theory, as a consequence of 
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FIGURE 4. The critical depth h,  versus h, with a, as parameter. 
For a, = !jn (dashed curve), h,  = q,. 
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FIGURE 5. Dimensionless wavenumber component A, in the 2-direction of free long waves. The 
parameter is a,. Solid curves: h,/h, = 2. Dashed curves: h,/h,  = 1 .  Doedashed curve: h,/h,  = 0.5 
and a, = in; A, is imaginary for a, = in and in. 

refraction (see e.g. Longuet-Higgins 1967) ; the added feature in the present problem 
is that the long-wave frequency is related to that of the short wave via (3.4). The 
critical depth h = h,  at which h2 = 0 corresponds to the turning point of the 
differential equation (3.15). Consider the incidence side h, = h,. From (4.5), since 
Ci, /h,  = C ~ , / C ~  < 1, there always exists an h,  in X ,  < X < X, if a, is large enough 

sina, > CBO/CO. so that 
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If h, = h, then h,  may exist for two values of X, and long waves can be trapped 
between them. If h is monotonic in X in the region X, < X < X, there can be only 
one h,. 

The value of h,  = Ci,/sin2a, depends on h, and a, as shown in figure 4. Clearly 
h, is greater for smaller a,. As is well known in the classical theory of normally incident 
shoaling waves (Burnside 1915), for increasing ho,.Cg, first increases to  a maximum 
a t  h, x 1 or k,  h, x 1.2, then decreases to the asymptotic limit a ( = g/2w2 in physical 
terms, see the dashed curve in figure 4). Correspondingly, h,  first increases to a 
maximum then to the asymptotic limit (2  sin ao)-2. To have some idea of the direction 
of the radiated free waves, we plot in figure 5 A, (real) as a function of h, with h,/h, 
and a, as parameters. Note that the curves for h,/h,  = 1 also give A, = A,, and hence 
the direction of free waves on both sides of the depth transition. The monotonic 
decline of A, with increasing h, is caused by similar behaviour of k,. I n  particular, 
kt CE,/h, oc h i 1  for small h, when h,/h, and a, are fixed. It follows from figure 5 and 
(4.7) that  

8, >< 8, if h, 5 h,. 

Both 8, and 8, increase for decreasing a,. I n  general the directions of the short wave, 
the envelope and the radiated free waves are all different. 

5. Zone of variable depth 
Referring to (3.15), we decompose 5 into two parts 

where tL has the same formal expression as (4 .2)  except that  h and k refer to their 
local values and depend on X .  The dimensionless equation for tF is then obtained 
straightforwardly from (3.15) : 

where 
G(X) = { m [ " ~ + ~ ~ + i  2b2 d2Z dh dZ 4 h K z - + 2 Z - ( K z h ) ) ]  dZ d 

( d X  d X  

dX C, 
ib 

z = E O - E L .  ( 5 . 2 ~ )  

Since G =+ 0 in X, < X < X, cF is now forced in the zone of variable depth (while free 
outside). As boundary conditions, the value and the derivative of tF must match those 
of (EF)3 at X = Xj, i.e. 

(5.3a, b) 

where (tF)r,j = 0, 1 ,  are formally expressed by (4.6) or (4 .8)  with unknown amplitudes 
Bi. Except for the uninteresting case where the depth change is very small, the 
solution must be obtained numerically. An efficient approach is to  recast the 
boundary-value problem for cF and (tF)3 subject to (5.3a, b )  as a variational principle 



This variational principle is a convenient basis for applying the finite-element method 
to solve for tF in X ,  < X < X ,  and B, and B, numerically. Derivation of (5.4) and 
other details are similar to Foda & Mei (1982) and are also given in Benmoussa (1983) ; 
they are omitted here. The computer program has been checked against a semi- 
analytical solution for a linear transition between h, and h,. Using element size 0.02 
and double precision (needed for evaluating the forcing term G which involves second 
derivatives), the two solutions differ by 0.1 yo. The numerical results for EF will be 
discussed for three cases. 

We remark here that the main part of Molin's (1982) paper is concerned with the 
special case of normal incidence and moderately deep water ( 1  9 kh 9 l/e). In 
particular, the steady set-down was ignored; the resulting amplitude of EF is much 
smaller than O(kA2).  Molin also gave some calculated results for kh = O( i ) ,  by simply 
using (2.2), (2.4) and (3.4) instead of their deep-water limits. Thus the third term in 
(2.8) is missing from his theory. 

Case I :  A plane slope connecting two unequal but constant depths 

There are four parameters in this problem: h,, h,, L and a,. The initial amplitude 
ratio is taken to be b = 1, as its effect is only of quantitative interest. 

We first fix the topography. The normalized constant depths are h = 0.5 and 1 ,  and 
the normalized length of the transition is L = 1 .  In  physical terms k, h = 0.5 , l  
and ekm L = 1 ; the bottom slope is b, where e is the small rate of envelope 
modulation. Let the incident wave approach from the shallower water, i.e. h, = 0.5 
and h,  = 1.  Figure 6 ( a )  gives the amplitude of tF over the slope ; the phase of tF is 
less interesting and is not presented. Suffice it to say that the X-derivative of the 
phase of tF, say S, corresponds to the wavenumber component of the free wave in 
the x-direction. If S > 0 (or < 0), the free wave propagates to the right (or to the 
left). From the computer output of the phase we have checked that the radiation 
condition is satisfied as imposed. The amplitude of tF is greater on the transmission 
(deeper) side of X = X, than on the incidence side X = X,. For a, = an there is a 
critical depth h, = 0.6 a t  X = 0.22 (marked by the dashed line) ; the free wave 6,  
is now radiated only on the shallow (incidence side) but exponentially decaying on 
the deeper (transmission) side. Figure 6 ( b )  shows the results for incident waves 
advancing from deeper water for the same topography. Again for a, = 0 and in, free 
waves are radiated towards both left (X+-  CO) and right (X++ co); the radiation 
being stronger on the transmission side, in qualitative agreement with Molin's result 
for kh 9 1 and a, = 0. For a, = in, free waves are only radiated on the shallower 
(transmission) side. 

We have studied the effect of greater depth by fixing a, = Oo and the bottom slope 
dh/dX = 0.5, i.e. L = 1 ,  h,-h, = 0.5. The results are qualitatively similar to figures 
6 (a ,  b ) ,  but the radiated long wave decreases monotonically in amplitudes with 
increasing h, ; the result is not presented here. 

Next the transition zone is lengthened to L = 5, but the depth difference is kept 
a t  0.5; the bottom slope is therefore reduced to h e .  For short waves advancing from 
h, = 0.5 to h, = 1 ,  the results are shown in figure 7 (a ) .  Radiation occurs for both sides 
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FIQURE 6. Amplitude of free long waves over a plane slope connecting two different depths. Dashed 
lines mark the locations of critical depth h,  for a, = in. Dimensionless length of slope L = 1 .  ( a )  
h, = 0.5, h, = 1.0; ( b )  h, = 1.0, h, = 0.5. 

of the transition but is stronger on the transmission (deeper) side. The maximum 
amplitude is of course reduced because of the milder slope. For a, = in radiation is 
only toward t,he (shallow) incidence side, the critical depth occurs a t  X w 1. Within 
X, < X < X, the attenuation to the left is not exponential, because of the presence 
of forcing, but is exponential outside. If the short waves advance from the deeper 
(h, = 1 )  to the shallower (h,  = 0.5) water, the amplitude of tF varies in an oscillatory 
manner along the slope also (figure 7 b ) .  This oscillatory variation is due to 
interference and was also noted by Molin for normal incidence. 

Finally we consider a whole range of transition length 0.5 < L < 5 by keeping 
h,-h, = k0.5, for normal incidence (a,, = 0) only. Radiation of CF is stronger on the 
transmission side and decreased steadily with L whether the short waves advance 
from the shallower or from the deeper water, as shown in figure 8. 
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X 

FIGURE 7 .  Same as figure 6 except L = 5.  h ,  is for a, = an 
(a )  h, = 0.5, h, = l .O;(b)  ha = 1.0, h, = 0.5. 

For a large angle of incidence, say a, = an, radiation on the shallower side decreases 
with L .  There is no radiation on the deeper side, because of the presence of the critical 
depth h,. Numerical results are omitted. 

Case II: Ridges. Case I I I :  Canyons 

Here we take b = 1 also and 

I h = h , + * ( l - c o s y  2 (0 < X < L) ,  
(5.5)  

= h ,  ( X < O  and X > L ) .  I 
Figure 9(a) shows the free wave for a ridge with h, = 1.0 and Ah = -0.5 and 
L = X ,  - X ,  = 2. For small angles of incidence a, = 0 and in, cF is radiated to both 
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FIGURE 8. Amplitude of free long waves at the left and right edges of the slope as a function of 
slope length. Normal incidence. (4) from h, = 0.5 to h, = 1.0; (+) from h = 1.0 to h = 0.5. 

X + + m  and -a. The amplitude of tF is not monotonic in X, but radiation is 
stronger on the transmission side. For a larger angle of incidence a, = in two critical 
depths appear as marked by the dashed lines; tF is generally larger between them 
and decays exponentially outside. Thus, while the short waves pass over the ridge, 
tF is trapped on the ridge and propagates only along the ridge, which acts as a 
waveguide ! Figure 9 ( b )  shows the results for a wider ridge with L = XI - X, = 10 and 
the same h, = 1.0 and Ah = -0.5. For a, = 0 and in, ltFl generally increases in X ;  
radiation is now much stronger on the transmission side. For a, =an trapping 
between the two equal critical depths, i.e. the waveguide effect, is now more 
pronounced. 

I n  figure 10(a) ItFI is plotted for a narrow canyon with h, = 0.5, Ah = 0.5 and 
L = X ,  - X ,  = 2. For small a,( = 0 and in) ItFI is small and left-going at X = 0 and 
quite large and right-going a t  X = L ;  it  changes rather little over the middle part 
of the canyon. For a, = in the left-going wave a t  X = 0 is now much greater, while 
the right-going wave at X = L is reduced. I n  the centre part of the canyon lEFl is 
suppressed. Thus the canyon acts as a barrier which causes greater backward 
radiation, and less forward radiation. Figure 10 ( b )  is for a wider canyon with L = 10h, 
and Ah, being the same as before. Because of the milder slope ItF/ there is an overall 
reduction of 1cFl. Especially noteworthy is the very low intensity between the two 
equal critical depths in the canyon for a, = in. Thus the barrier effect is further 
enhanced. 

The effect of increasing canyon width L is not however monotonic, as is shown in 
figure 11 for normal incidence. I n  particular the radiation on the incidence side is 
generally much smaller and while the stronger radiation on the transmission side is 
oscillatory in L,  as is qualitatively the case for the ridge. 
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FIGURE 9. Amplitude of free long waves over a ridge h, = 1.0, Ah = -0.5. Dashed lines mark the 
locations of critical depth h,  for a, = an. ( a )  Width of canyon L = 2 ;  ( b )  L = 10. 

6. Concluding remarks 
In this paper we have focused our attention on long waves caused by periodically 

modulated groups of short waves incident upon a variable bottom with straight and 
parallel contours. Because of nonlinearity, the radiation stresses induce steady 
set-down and long waves that are locked to the wave envelope. When there is a finite 
region of variable depth and the lengthscale of the region is comparable to the group 
length, further long waves are generated and radiated away as free long waves. These 
additional long waves have directions and propagation speeds different from those 
of the short waves, and of their envelope (hence also of those long waves which are 
locked to the envelope). There are also situations where these new long waves can 
be trapped on the shallow depth. We stress that, these free or trapped long waves 
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FIGURE 10. Amplitude of free long waves over a canyon, h, = 0.5, Ah = -0.5. Dashed lines mark 
the locations of critical deptjh h,  for a, = in. (a )  Width of canyon L = 2;  ( b )  L = 10. 

differ from those in earlier theories of Longuet-Higgins (1967) where the forcing 
mechanism by incident long waves was strictly 1inea.r. 

I n  this study the incident wave is characterized only by the angle of incidence, 
whose effect is of primary importance to the phenomenon a t  hand. Other parameters 
which can describe incident waves of increasing complexity will certainly be of 
practical interest. For example, we can take the incident waves to consist of two 
collinear trains of unequal amplitudes, i.e. b + 1 in (3.3). The computation is 
straightforward, but clearly the generation of free and locked long waves is not 
qualitatively altered. I n  practice it may also be desirable to include the effects of a 
small directional spread and/or randomness in the incident waves ; nevertheless (2.9) 
is still a proper starting point. For transient envelopes such as a wave packet, the 
numerical method of characteristics can then be used. 
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FIGURE 11. Amplitude of free long waves a t  the left and right edges of a canyon (C) h, = 0.5, Ah = 0.5 
and a ridge (R) h, = 1.0, Ah = -0.5 as a function of width L. Normal incidence only. 

Extension of the present study to two-dimensional submerged shoals should be 
worth while. Except for the neighbourhood of a caustic, the short-wave envelope may 
then be solved by the method of characteristics from (2.6); the free waves can also 
be effectively computed by the two-dimensional hybrid-element method of Chen & 
Mei (1974). Refinement near a caustic where diffraction takes place is desirable. On 
the other hand, a large-scale shear current also refracts short waves a t  the first order. 
Analogous generation of long waves at the second order is then expected, and 
extensions of (2.7) and (2.8) are a very convenient basis for treating these waves. 
Further studies on the resonance of small fishing harbours by long groups of short 
waves, in which diffraction (rather than refraction) of the modulated short waves is 
the primary feature, will also be very valuable to coastal engineering. 
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